Geometric invariants for quasi-symmetric designs (Q1113904)

From MaRDI portal





scientific article; zbMATH DE number 4081568
Language Label Description Also known as
English
Geometric invariants for quasi-symmetric designs
scientific article; zbMATH DE number 4081568

    Statements

    Geometric invariants for quasi-symmetric designs (English)
    0 references
    1988
    0 references
    New necessary conditions for the existence of quasi-symmetric 2-designs are derived as follows: Let p be an odd prime and let B be a 2- (v,k,\(\lambda)\) design with block intersection sizes \(s_ 1,s_ 2,...,s_ n\) satisfying \(s_ 1\equiv s_ 2\equiv...\equiv s_ n\equiv s\quad (mod p).\) Then either (1) \(r\equiv \lambda\) (mod \(p^ 2)\), (2) \(v\equiv 0\) (mod 2), \(v\equiv k\equiv s\equiv 0\) (mod p), \((-1)^{v/2}\) is a square in GF(p), (3) \(v\equiv 1\) (mod 2), \(v\equiv k\equiv s\not\equiv 0\) (mod p), \((-1)^{(v-1)/2}s\) is a square in GF(p), (4) \(r\equiv \lambda \equiv 0\) (mod p) and either (a) \(v\equiv 0\) (mod 2), \(v\equiv k\equiv s\not\equiv 0\) (mod p), (b) \(v\equiv 0\) (mod 2), \(k\partial s\not\equiv 0\) (mod p), v/s is a nonsquare in GF(p), (c) \(v\equiv 1\) (mod 2p), \(r\equiv 0\) (mod \(p^ 2)\), \(k\equiv s\not\equiv 0\) (mod p), (d) \(v\equiv p\) (mod 2p), \(k\equiv s\equiv 0\) (mod p), (e) \(v\equiv 1\) (mod 2), \(k\equiv s\equiv 0\) (mod p), v is a nonsquare in GF(p), (f) \(v\equiv 1\) (mod 2), \(k\equiv s\equiv 0\) (mod p), v and \((- 1)^{(v-1)/2}\) are square in GF(p). This shows the non-existence of some quasi-symmetric 2-designs.
    0 references
    block graph
    0 references
    quasi-symmetric 2-designs
    0 references
    0 references

    Identifiers