Weak (1,1) bounds for oscillatory singular integrals (Q1117418)

From MaRDI portal





scientific article; zbMATH DE number 4092075
Language Label Description Also known as
English
Weak (1,1) bounds for oscillatory singular integrals
scientific article; zbMATH DE number 4092075

    Statements

    Weak (1,1) bounds for oscillatory singular integrals (English)
    0 references
    0 references
    0 references
    1987
    0 references
    Theorem. For any polynomial P: \({\mathbb{R}}^ n\times {\mathbb{R}}^ n\to {\mathbb{R}}\) and any Calderón-Zygmund kernel K, the operator \(Tf(x)=p.v.\int e^{iP(x,y)}K(x-y)f(y)dy\) is of weak type (1,1) with a bound depending only on \(\| K\|_{CZ}\) and the degree of P. For the proof the authors use a ew variant of the Calderón-Zygmund decomposition method. This variant appears to be of independent interest.
    0 references
    Calderón-Zygmund kernel
    0 references
    Calderón-Zygmund decomposition
    0 references

    Identifiers