Weak (1,1) bounds for oscillatory singular integrals (Q1117418)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Weak (1,1) bounds for oscillatory singular integrals |
scientific article; zbMATH DE number 4092075
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Weak (1,1) bounds for oscillatory singular integrals |
scientific article; zbMATH DE number 4092075 |
Statements
Weak (1,1) bounds for oscillatory singular integrals (English)
0 references
1987
0 references
Theorem. For any polynomial P: \({\mathbb{R}}^ n\times {\mathbb{R}}^ n\to {\mathbb{R}}\) and any Calderón-Zygmund kernel K, the operator \(Tf(x)=p.v.\int e^{iP(x,y)}K(x-y)f(y)dy\) is of weak type (1,1) with a bound depending only on \(\| K\|_{CZ}\) and the degree of P. For the proof the authors use a ew variant of the Calderón-Zygmund decomposition method. This variant appears to be of independent interest.
0 references
Calderón-Zygmund kernel
0 references
Calderón-Zygmund decomposition
0 references
0.98041445
0 references
0.96386373
0 references
0.9595853
0 references
0.95466435
0 references
0.9393525
0 references
0 references