Exponential bounds of mean error for the kernel estimate of regression functions (Q1117632)

From MaRDI portal





scientific article; zbMATH DE number 4092571
Language Label Description Also known as
English
Exponential bounds of mean error for the kernel estimate of regression functions
scientific article; zbMATH DE number 4092571

    Statements

    Exponential bounds of mean error for the kernel estimate of regression functions (English)
    0 references
    1989
    0 references
    Let (X,Y), \((X_ 1,Y_ 1),...,(X_ n,Y_ n)\) be i.d.d. \(R^ r\times R\)-valued random vectors with \(E| Y| <\infty\), and let \(Q_ n(x)\) be a kernel estimate of the regression function \(Q(x)=E(Y|\) \(X=x)\). We establish an exponential bound of the mean deviation between \(Q_ n(x)\) and Q(x) given the training sample \(Z^ n=(X_ 1,Y_ 1,...,X_ n,Y_ n)\), under conditions as weak as possible.
    0 references
    nonparametric regression
    0 references
    Besicovitch covering lemma
    0 references
    kernel estimate
    0 references
    regression function
    0 references
    exponential bound
    0 references
    mean deviation
    0 references
    training sample
    0 references
    0 references

    Identifiers