Quand l'homologie cyclique périodique n'est pas la limite projective de l'homologie cyclique. (When periodic cyclic homology is not the projective limit of cyclic homology) (Q1118684)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Quand l'homologie cyclique périodique n'est pas la limite projective de l'homologie cyclique. (When periodic cyclic homology is not the projective limit of cyclic homology) |
scientific article; zbMATH DE number 4095734
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Quand l'homologie cyclique périodique n'est pas la limite projective de l'homologie cyclique. (When periodic cyclic homology is not the projective limit of cyclic homology) |
scientific article; zbMATH DE number 4095734 |
Statements
Quand l'homologie cyclique périodique n'est pas la limite projective de l'homologie cyclique. (When periodic cyclic homology is not the projective limit of cyclic homology) (English)
0 references
1989
0 references
After recalling results and general points on cyclic homology of group rings, this paper considers the cyclic group \({\mathbb{Z}}/_ 2\) and the group rings \({\mathbb{Z}}[{\mathbb{Z}}/_ 2]\) and \({\mathbb{Z}}[{\mathbb{Z}}/_ n]\) and calculates their periodic cyclic cohomologies. The author shows here that periodic cyclic homology is generally not the inverse limit of cyclic homology and not, unlike cyclic homology, invariant under flat base change.
0 references
Connes spectral sequence
0 references
periodic cyclic cohomology
0 references
cyclic homology
0 references
group rings
0 references
cyclic group
0 references
periodic cyclic homology
0 references
inverse limit
0 references
0.7963668
0 references
0.7900877
0 references
0.79005104
0 references
0.77237886
0 references
0.7721776
0 references
0.7641597
0 references
0.7593806
0 references
0.7588432
0 references