Existence and attractivity results for a class of degenerate functional- parabolic problems (Q1118755)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Existence and attractivity results for a class of degenerate functional- parabolic problems |
scientific article; zbMATH DE number 4096020
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Existence and attractivity results for a class of degenerate functional- parabolic problems |
scientific article; zbMATH DE number 4096020 |
Statements
Existence and attractivity results for a class of degenerate functional- parabolic problems (English)
0 references
1987
0 references
We want to study existence, uniqueness and asymptotical behaviour of the solutions of the following problem: \[ \partial_ tu(t,x)=\Delta u^ m(t,x)+a(x)u(t,x)-b(x)u^ 2(t,x)- \] \[ -u(t,x)\int^{t}_{-\infty}ds k(t-s,x)u(s,x)\quad in\quad (0,\infty)\times \Omega, \] \[ u(t,x)=0\quad in\quad (0,\infty)\times \partial \Omega;\quad u(t,x)=u_ 0(t,x)\quad in\quad (-\infty,0]\times \Omega. \]
0 references
existence
0 references
uniqueness
0 references
asymptotical behaviour
0 references
0 references
0 references
0 references
0 references