Covariance density estimation for autoregressive spectral modelling of point processes (Q1120240)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Covariance density estimation for autoregressive spectral modelling of point processes |
scientific article; zbMATH DE number 4100458
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Covariance density estimation for autoregressive spectral modelling of point processes |
scientific article; zbMATH DE number 4100458 |
Statements
Covariance density estimation for autoregressive spectral modelling of point processes (English)
0 references
1989
0 references
This paper discusses methods for the estimation of the covariance density and conditional intensity function of point processes and presents alternative computational efficient estimation algorithms leading always to positive semidefinite estimates, therefore adequate for autoregressive spectral analysis. Autoregressive spectral modelling of point processes from Yule-Walker type equations and Levinson recursion combined with the minimum AIC or CAT principle is illustrated with neurobiological data.
0 references
covariance density
0 references
conditional intensity function
0 references
point processes
0 references
estimation algorithms
0 references
positive semidefinite estimates
0 references
autoregressive spectral analysis
0 references
Yule-Walker type equations
0 references
Levinson recursion
0 references
minimum AIC
0 references
CAT principle
0 references
neurobiological data
0 references
0 references