On the local behavior of solutions of singular parabolic equations (Q1120735)

From MaRDI portal





scientific article; zbMATH DE number 4101716
Language Label Description Also known as
English
On the local behavior of solutions of singular parabolic equations
scientific article; zbMATH DE number 4101716

    Statements

    On the local behavior of solutions of singular parabolic equations (English)
    0 references
    0 references
    0 references
    1988
    0 references
    Soit \(\Omega\) un ensemble en \(R^ N\), \(0<T<\infty\), \(\Omega_ T\equiv \Omega \times (0,T)\), \(u=u(x,t)\). On étudie l'équation \[ (1)\quad u_ t-div a(x,u,Du)+b(x,t,u,Du)=0, \] où Du est le gradient seulement dans les variables d'espace \(x\equiv (x_ 1,x_ 2,...,x_ N)\). Les fonctions a: \(R^{2N+1}\to R^ N\), b: \(R^{2N+2}\to R^ N\) sont mesurables et satisfont conditions, pour lesquelles ont renvoit au mémoire. On étudie solutions faibles de l'équation (1) (supersolutions et subsolutions): \[ u\in V_{2p}(\Omega_ T)\equiv C(0,T,L^ 2(\Omega))\cap L^ 2(0,T,H^ p(\Omega)). \]
    0 references
    singular
    0 references
    measurable nonlinearity
    0 references
    weak solution
    0 references
    sub- and
    0 references
    super- solution
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references