Trivial \(K_ 1\)-flow of AF algebras and finite von Neumann algebras (Q1120798)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Trivial \(K_ 1\)-flow of AF algebras and finite von Neumann algebras |
scientific article; zbMATH DE number 4101890
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Trivial \(K_ 1\)-flow of AF algebras and finite von Neumann algebras |
scientific article; zbMATH DE number 4101890 |
Statements
Trivial \(K_ 1\)-flow of AF algebras and finite von Neumann algebras (English)
0 references
1990
0 references
A \(C^*\)-algebra \({\mathcal A}\) is said to have a trivial \(K_ 1\)-flow if \(K_ 1({\mathcal B})=0\) for any hereditary \(C^*\)-subalgebra \({\mathcal B}\) of M(\({\mathcal A})\). We prove that if \({\mathcal A}\) is a \(\sigma\)-unital AF algebra, then \({\mathcal A}\) has a trivial \(K_ 1\)-flow, and that if \({\mathcal A}\) is a finite von Neumann algebra, then \({\mathcal A}\otimes {\mathcal K}\) has a trivial \(K_ 1\)-flow. If the multiplier algebra of \({\mathcal A}\) has the FS property, then the unitary group of \(\tilde {\mathcal B}\) is connected for any hereditary \(C^*\)-subalgebra \({\mathcal B}\) of M(\({\mathcal A})\). We also prove that if \({\mathcal A}\) is either a \(\sigma\)-unital nonunital purely infinite simple \(C^*\)-algebra or a nonunital \(C^*\)-algebra stably isomorphic to a Bunce-Deddens algebra, then \(K_ 1({\mathcal B})=0\) for any hereditary \(C^*\)-subalgebra \({\mathcal B}\) of M(\({\mathcal A})\) not contained in \({\mathcal A}\).
0 references
trivial \(K_ 1\)-flow
0 references
hereditary \(C^*\)-subalgebra
0 references
sigma-unital AF algebra
0 references
finite von Neumann algebra
0 references
multiplier algebra
0 references
FS property
0 references
unitary group
0 references
Bunce-Deddens algebra
0 references
0 references