Explicit solution of Sylvester and Lyapunov equations (Q1121344)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Explicit solution of Sylvester and Lyapunov equations |
scientific article; zbMATH DE number 4103263
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Explicit solution of Sylvester and Lyapunov equations |
scientific article; zbMATH DE number 4103263 |
Statements
Explicit solution of Sylvester and Lyapunov equations (English)
0 references
1989
0 references
Consider a Sylvester matrix equation (1) \(AX+XB=C\) or a discrete Sylvester equation (2) \(X+LXB=C\) where \(A\),\(B\),\(C\),\(L\) are constant \((p\times p) \), \(q\times q)\), \((p\times q)\), \((p\times p)\) dimensional matrices and \(X\) is the \((p\times q)\) unknown matrix. This paper shows that the exact solution of (1) or (2) can be calculated by the inversion of a \((\min(p,q)\times \min(p,q))\) matrix. For a \((j\times k)\) matrix \(M=(M_1,\ldots,M_ k)\), \(\text{vec}(M)\) is defined as \[ \text{vec}(M)=\left[\begin{matrix} M_1 \\ \vdots \\ M_ k \end{matrix} \right]. \] Let \(M\times N\) denote the Kronecker product of the matrices \(M\) and \(N\). The following theorems are the main results of this paper: Theorem 4: If \(A\) and \(-B\) have distinct eigenvalues, the solution of (1) is giv en by: \[ \text{vec}(X) = -\left[\sum^{q-1}_{i=0} B_ i\otimes(-A)^ i\right] \left[I_ q\otimes\left((-A)^ q + \sum^{q-1}_{i=0} b_ i(-A)^ i\right) ^{-1}\right] \text{vec}(C) \] where the \(b_ i\) are the coefficients of the characteristic polynomial of \(B\) and: \(B_{q-1}=I_ 1\), \(i\in \{0,\ldots,q-2\}\), \(B_ i=B^ T B_{i+1} + b_{i+1} I_ q\). Theorem 6: If the eigenvalues of \(B\) are distinct of the inverse of the eigenvalues of \(L\), the solution of the discrete Sylvester equation (2) is given by: \[ \text{vec}(X) = -\left[\sum^{q-1}_{i=0} (-1)^ i (B_ i\otimes L^{q-1-i})\right] \left[I_ q\otimes \left\{(-I_ p)^ q + \sum^{q-1}_{i=0} b_ i L^{q-i } (-I_ p)^ i\right\}^{-1}\right] \text{vec}(C) \] where the \(b_ i\) and \(B_ i\) are defined in the same manner as in Theorem 4. A numerical example is given.
0 references
Lyapunov equation
0 references
Sylvester matrix equation
0 references
Kronecker product
0 references
numerical example
0 references