On the Cauchy problem for the nonlinear Klein-Gordon equation with a cubic convolution (Q1121453)

From MaRDI portal





scientific article; zbMATH DE number 4103606
Language Label Description Also known as
English
On the Cauchy problem for the nonlinear Klein-Gordon equation with a cubic convolution
scientific article; zbMATH DE number 4103606

    Statements

    On the Cauchy problem for the nonlinear Klein-Gordon equation with a cubic convolution (English)
    0 references
    0 references
    1988
    0 references
    We study the Cauchy problem for the nonlinear Klein-Gordon equation with a cubic convolution: \[ \partial^ 2_ tw(t)-\Delta w(t)+w(t)+\{V_{\gamma}*f(w(t))\}w(t)=0;\quad w(0)=\phi (x),\quad \partial_ tw(0)=\psi (x), \] where \(f(w)=w^ 2\), \(V_{\gamma}(x)=| x|^{-\gamma}\) in \((x,t)\in {\mathbb{R}}^ n\times {\mathbb{R}}.\) We prove the existence of weak solutions for \(0<\gamma <n\). We also prove that for \(0<\gamma <Min\{4,n\}\) the weak solution is unique and there exists a regular solution.
    0 references
    Cauchy problem
    0 references
    nonlinear Klein-Gordon equation
    0 references
    cubic convolution
    0 references
    existence
    0 references
    weak solutions
    0 references
    unique
    0 references
    regular solution
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references