On the Cauchy problem for the nonlinear Klein-Gordon equation with a cubic convolution (Q1121453)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On the Cauchy problem for the nonlinear Klein-Gordon equation with a cubic convolution |
scientific article; zbMATH DE number 4103606
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On the Cauchy problem for the nonlinear Klein-Gordon equation with a cubic convolution |
scientific article; zbMATH DE number 4103606 |
Statements
On the Cauchy problem for the nonlinear Klein-Gordon equation with a cubic convolution (English)
0 references
1988
0 references
We study the Cauchy problem for the nonlinear Klein-Gordon equation with a cubic convolution: \[ \partial^ 2_ tw(t)-\Delta w(t)+w(t)+\{V_{\gamma}*f(w(t))\}w(t)=0;\quad w(0)=\phi (x),\quad \partial_ tw(0)=\psi (x), \] where \(f(w)=w^ 2\), \(V_{\gamma}(x)=| x|^{-\gamma}\) in \((x,t)\in {\mathbb{R}}^ n\times {\mathbb{R}}.\) We prove the existence of weak solutions for \(0<\gamma <n\). We also prove that for \(0<\gamma <Min\{4,n\}\) the weak solution is unique and there exists a regular solution.
0 references
Cauchy problem
0 references
nonlinear Klein-Gordon equation
0 references
cubic convolution
0 references
existence
0 references
weak solutions
0 references
unique
0 references
regular solution
0 references
0.94520366
0 references
0.9338826
0 references
0.93063223
0 references
0.9259163
0 references
0.92076796
0 references
0.91973233
0 references