The fundamental theorem of algebra for monosplines with multiple nodes (Q1121468)

From MaRDI portal





scientific article; zbMATH DE number 4103660
Language Label Description Also known as
English
The fundamental theorem of algebra for monosplines with multiple nodes
scientific article; zbMATH DE number 4103660

    Statements

    The fundamental theorem of algebra for monosplines with multiple nodes (English)
    0 references
    0 references
    1989
    0 references
    The author proves: There exists a unique monospline \[ M(x)=x^ r- \sum^{n}_{i=1}\sum^{m_ i-1}_{j=0}a_{ij}(x-x_ i)^{r-1- j}+\sum^{r-1}_{k=0}b_ kx^ k \] of degree r with n nodes of odd multiplicities \(m_ i\) with \(1\leq m_ i\leq r\), \(i=1,...,n\), and zeros at the points \(t_ i\) with \(0\leq t_ 1<...<t_ k\leq 1\), of multiplicity \(\rho_ i\) with \(1\leq \rho_ i\leq r+1\), \(\sum^{k}_{i=1}\rho_ i=N+r,\) \(\rho_ 1\leq r+sgn(t_ 1),\) \(\rho_ k\leq r+sign(1-t_ k)\) if and only if the following condition is satisfied \[ \sum^{k}_{j=1}(m_ j+1)-1\leq \sum^{k_ i}_{j=1}\rho_ j\leq r-m_ i+\sum^{k}_{j=1}(m_ j+1),\quad i=1,...,n. \]
    0 references
    0 references
    multiple nodes
    0 references
    existence
    0 references
    uniqueness
    0 references
    monospline
    0 references

    Identifiers