\(L^ 1\)-convergence of modified cosine sums with generalized quasiconvex coefficients (Q1121475)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: \(L^ 1\)-convergence of modified cosine sums with generalized quasiconvex coefficients |
scientific article; zbMATH DE number 4103676
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | \(L^ 1\)-convergence of modified cosine sums with generalized quasiconvex coefficients |
scientific article; zbMATH DE number 4103676 |
Statements
\(L^ 1\)-convergence of modified cosine sums with generalized quasiconvex coefficients (English)
0 references
1988
0 references
The author considers the cosine series \(g(x)=a_ 0/2+\sum^{\infty}_{n=1}a_ n \cos nx\) with partial sums \(S_ m(x)\) and modified sums \(g_ m(x)=S_ m(x)-a_{m+1}D_ m(x),\) where \(D_ m(x)\) is the Dirichlet kernel \((m=0,1,...)\). He proves that if \(\lim_{n\to \infty}a_ n=0\) and \(\sum^{\infty}_{n=1}n^ k| \Delta^{k+1} a_ n| <\infty\) for some \(k>0\), where the order k of differences may be fractional, then \(g_ m(x)\) converges to g(x) in the \(L^ 1\)-metric. Furthermore, \(S_ m(x)\) converges in the \(L^ 1\)- metric if and only if \(\lim_{n\to \infty}a_ n \ln n=0.\) In the case \(k=1\), these results reduce to the theorems of \textit{J. W. Garrett} and \textit{Č. V. Stanojević} [Proc. Am. Math. Soc. 60, 68-71 (1977; Zbl 0339.42007)].
0 references
cosine series
0 references
Dirichlet kernel
0 references
\(L^ 1\)-metric
0 references
0 references