Asymptotically precise estimate of the accuracy of Gaussian approximation in Hilbert space (Q1122207)

From MaRDI portal





scientific article; zbMATH DE number 4105943
Language Label Description Also known as
English
Asymptotically precise estimate of the accuracy of Gaussian approximation in Hilbert space
scientific article; zbMATH DE number 4105943

    Statements

    Asymptotically precise estimate of the accuracy of Gaussian approximation in Hilbert space (English)
    0 references
    1989
    0 references
    Let \(X_ 1,X_ 2,..\). be i.i.d. random variables on a separable Hilbert space H, with E \(X_ 1=0\), E \(| X_ 1|^ 3<\infty\). Denote by V the covariance operator of \(\sigma^{-1}X_ 1\), where \(\sigma^ 2=E | X_ 1|^ 2\) and let Y stand for a (0,V) Gaussian H-valued random variable. The paper contains an asymptotically precise estimate of \[ P(| (\sigma \sqrt{n})^{-1}\sum^{n}_{1}X_ i-a| <r)- P(| Y-a| <r), \] for all \(a\in H\), \(r\geq 0\), depending on the first six eigenvalues of V. The proof uses \textit{F. Goetze}'s approach [Z. Wahrscheinlichkeitstheor. Verw. Geb. 50, 333-355 (1979; Zbl 0405.60009)] to the estimation of the characteristic function of \(| \sum^{n}_{1}X_ i|^ 2\) and some ideas due to \textit{V. V. Yurinskij} [Teor. Veroyatn. Primen. 27, 270-278 (1982; Zbl 0565.60005); English translation in Theory Probab. Appl. 27, 280-289 (1982)].
    0 references
    Gaussian approximation
    0 references
    Hilbert space
    0 references
    covariance operator
    0 references
    characteristic function
    0 references
    0 references
    0 references
    0 references

    Identifiers