Behandlung Fredholmscher Integralgleichungen mit schwachen Singularitäten und Unstetigkeiten erster Art in den Kernfunktionen. (Treatment of Fredholm integral equations with weak singularities and discontinuities of the first kind in the kernels) (Q1122974)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Behandlung Fredholmscher Integralgleichungen mit schwachen Singularitäten und Unstetigkeiten erster Art in den Kernfunktionen. (Treatment of Fredholm integral equations with weak singularities and discontinuities of the first kind in the kernels) |
scientific article; zbMATH DE number 4108130
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Behandlung Fredholmscher Integralgleichungen mit schwachen Singularitäten und Unstetigkeiten erster Art in den Kernfunktionen. (Treatment of Fredholm integral equations with weak singularities and discontinuities of the first kind in the kernels) |
scientific article; zbMATH DE number 4108130 |
Statements
Behandlung Fredholmscher Integralgleichungen mit schwachen Singularitäten und Unstetigkeiten erster Art in den Kernfunktionen. (Treatment of Fredholm integral equations with weak singularities and discontinuities of the first kind in the kernels) (English)
0 references
1989
0 references
In order to treat Fredholm integral equations of the second kind with a discontinuous kernel numerically, the authors develop the ``quadrature of twice interpolatory type'' which is applied in a Nyström procedure. This quadrature is a product integration formula which is generated by applying the interpolation operations \(\bar P_ N[f]\) and \(P_ M[g\bar P_ N[f]]\) to approximate the value \(\int^{b}_{a}h(t)g(t)f(t)dt\) with \(h\in L_ 1(a,b)\), \(g\in C[a,b]\). In this way, one can allow for discontinuities along continuous curves and weak singularities in the kernel function. Furthermore, the authors work out adaptive strategies which lead to collectively compact sequences of approximating operators and, therefore, to convergent approximation procedures. Unfortunately, the paper does not give numerical examples which could explain practical performance and efficiency of the method.
0 references
Fredholm integral equations of the second kind
0 references
discontinuous kernel
0 references
quadrature of twice interpolatory type
0 references
Nyström procedure
0 references
product integration formula
0 references
weak singularities
0 references
collectively compact sequences of approximating operators
0 references