The numerical computation of the Voigt function by a corrected midpoint quadrature rule for \(( -\infty{}, \infty{})\) (Q1173849)

From MaRDI portal





scientific article; zbMATH DE number 7586
Language Label Description Also known as
English
The numerical computation of the Voigt function by a corrected midpoint quadrature rule for \(( -\infty{}, \infty{})\)
scientific article; zbMATH DE number 7586

    Statements

    The numerical computation of the Voigt function by a corrected midpoint quadrature rule for \(( -\infty{}, \infty{})\) (English)
    0 references
    25 June 1992
    0 references
    This paper presents a method for computing the Voigt function \[ v(x,z)={y\over \pi}\int^ \infty_{-\infty}{e^{-\lambda^ 2}\over (x-\lambda)^ 2+y^ 2}d\lambda \] through the application of a midpoint quadrature rule that has been corrected to accurately integrate a certain class of meromorphic functions. An informal pseudocoe statement of an algorithm for computing \(v(x,y)\) to a specified absolute error \(\varepsilon\) is also given.
    0 references
    Voigt function
    0 references
    midpoint quadrature rule
    0 references
    algorithm
    0 references
    0 references
    0 references
    0 references

    Identifiers