Hankel transformations and spaces of type \(S\) (Q1174832)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Hankel transformations and spaces of type \(S\) |
scientific article; zbMATH DE number 9506
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Hankel transformations and spaces of type \(S\) |
scientific article; zbMATH DE number 9506 |
Statements
Hankel transformations and spaces of type \(S\) (English)
0 references
25 June 1992
0 references
It is well nown, that the \(L_ 1\)-function \(\varphi\) belongs to the Schwartz space \(S\) if and only if for all \(k,\ell\in\mathbb{N}_ 0\) \[ \sup_{x\in\mathbb{R}}| x^ k\varphi(x)|<\infty\text{ and } \sup_{x\in\mathbb{R}}| x^ \ell(F\varphi)(x)|<\infty, \] where \(F\varphi\) denotes the Fourier transform of \(\varphi\). Similar results are obtained for even functions \(\varphi\) belonging to Gelfand-Shilov space \(S^ \beta_ \alpha\), \(\alpha>0\), \(\beta>0\), \(\alpha+\beta\geq 1\), and for their Hankel transform \(H_ \nu\varphi\). A straightforward corollary is \(H_ \nu(S^ \beta_{\alpha,\hbox{even}})=S^ \alpha_{\beta,\hbox{even}}\), and the operators \(H_ \mu H_ \nu\) yield Weyl's fractional calculus.
0 references
Schwartz space
0 references
Fourier transform
0 references
Gelfand-Shilov space
0 references
Hankel transform
0 references
Weyl's fractional calculus
0 references
0.94985276
0 references
0.94108105
0 references
0.9372583
0 references
0.9319967
0 references
0.9174949
0 references
0.9166945
0 references
0.9153406
0 references
0.9153406
0 references