Existence and nonexistence of positive radial solutions of Neumann problems with critical Sobolev exponents (Q1175235)

From MaRDI portal





scientific article; zbMATH DE number 11198
Language Label Description Also known as
English
Existence and nonexistence of positive radial solutions of Neumann problems with critical Sobolev exponents
scientific article; zbMATH DE number 11198

    Statements

    Existence and nonexistence of positive radial solutions of Neumann problems with critical Sobolev exponents (English)
    0 references
    0 references
    0 references
    25 June 1992
    0 references
    The authors study positive radial solutions of the semilinear elliptic Neumann problem in a bounded domain \(\Omega\subset \mathbb{R}^n\) \((n\geq 3)\) \[ - \Delta u= u^p+ \lambda\alpha(x) u\quad\text{in }\Omega,\;\partial u/\partial\nu= 0\quad\text{on } \partial\Omega, \] where \(p= (n+ 2)/(n- 2)\) is the critical Sobolev exponent, \(\lambda> 0\). Since for \(\alpha(x)\geq 0\), this problem admits no solution, the authors study existence and nonexistence in the cases where \(\alpha(x)\leq 0\) or \(\alpha\) changes sign.
    0 references
    semilinear elliptic Neumann problem
    0 references
    critical Sobolev exponent
    0 references
    existence and nonexistence
    0 references

    Identifiers