Chaining via annealing (Q1175412)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Chaining via annealing |
scientific article; zbMATH DE number 11560
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Chaining via annealing |
scientific article; zbMATH DE number 11560 |
Statements
Chaining via annealing (English)
0 references
25 June 1992
0 references
The aim of the paper is the numerical evaluation of \(\int_X f(x)\mu\,(dx)\) where \(X\) is a metric space, \(\mu\) is a measure on the Borel sets and \(f\colon X\to \mathbb{R}\) is Borel measurable. A very general method of implementing chaining for such arbitrary integrals is presented. Further it is shown that the chaining can be applied to solve global optimization problems. Also, several generalizations of a theorem of \textit{M. Pincus} [Oper. Res. 16, 690--694 (1968; Zbl 0208.22001)] are given.
0 references
numerical integration
0 references
adaptive importance sampling
0 references
annealing
0 references
Pincus' theorem
0 references
metric space
0 references
chaining
0 references
integrals
0 references
global optimization
0 references