Monotonicity in time at the single point for the semilinear heat equation with source (Q1176217)

From MaRDI portal





scientific article; zbMATH DE number 13622
Language Label Description Also known as
English
Monotonicity in time at the single point for the semilinear heat equation with source
scientific article; zbMATH DE number 13622

    Statements

    Monotonicity in time at the single point for the semilinear heat equation with source (English)
    0 references
    0 references
    25 June 1992
    0 references
    On étudie le problème de Cauchy pour l'équation semilinéaire parabolique (1) \(u_ t=\Delta u+u^ \beta\) en \(\mathbb{R}^ N\times(0,T)\), (2) \(u(x,0)=u_ 0(x)\) en \(\mathbb{R}^ N\), où \(\beta>1\) est un constante. On donne les hypothèses suivantes: \(u_ 0=u_ 0(r)>0\) en \(\mathbb{R}^ N\), \((r=| x|)\), \(M_ 1=\sup u_ 0<\infty\), \(u_ 0\in C(\mathbb{R}^ N)\), \(u_ 0'(0)=0\). Le problème (1), (2) a une unique solution positive classique en \(\mathbb{R}^ N\times(0,T)\). La solution \(u=u(r,t)\) est la fonction radiale symétrique pour \(t\in(0,T)\) et satisfait les \(u_ t=r^{1-N}(r^{N-1}u_ r)_ r+u^ \beta\) en \(\mathbb{R}^ N\times(0,T)\), \(u(r,0)=u_ 0(r)\) en \(\mathbb{R}_ +\), \(u_ r(0,t)=0\) pour \(t\in(0,T)\). On étudie les propriètés de monotonie (dans les temps) de la solution dans le point \(r=0\).
    0 references
    methods of intersection's comparison
    0 references
    lap number theory
    0 references
    infinite set of the stationary solutions
    0 references
    Cauchy problem
    0 references
    heat conduction
    0 references
    combustion
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references