Ramanujan's ``Lost'' Notebook. VII: The sixth order mock theta functions (Q1177238)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Ramanujan's ``Lost Notebook. VII: The sixth order mock theta functions |
scientific article; zbMATH DE number 20125
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Ramanujan's ``Lost'' Notebook. VII: The sixth order mock theta functions |
scientific article; zbMATH DE number 20125 |
Statements
Ramanujan's ``Lost'' Notebook. VII: The sixth order mock theta functions (English)
0 references
26 June 1992
0 references
The authors prove 11 identities from Ramanujan's lost notebook. These involve seven functions defined by \(q\)-series, which are called mock theta functions. Let \[ \begin{aligned} (x)_ n &=(x;q)_ n =\begin{cases} \prod_{i=0}^{n-1}(1-q^ ix), &n\geq 0,\\ \prod_{i=1}^{-n}(1- q^{-i}x)^{-1}, &n<0,\;x\neq q,q^ 2,\dots\hbox{ or } q^{-n}, \end{cases} \\ (x)_ \infty &=(x;q)_ \infty=\prod_{i\geq 0}(1-q^ i x), \hbox{ where } | q| <1, \\ \phi(q) &=\sum_{n\geq 0} {(- 1)^ n q^{n^ 2}(q;q^ 2)_ n \over (-q)_{2n}}, \\ \psi(q) &=\sum_{n\geq 0} {(-1^ n)q^{(n+1)^ 2}(q;q^ 2)_ n \over (- q)_{2n+1}}, \\ j(x,q)&=\sum_ n(-1)^ nq^{\left({x \atop 2}\right)}x^ n, \quad | q|<1. \\ \end{aligned} \] Two of the identities are \[ \begin{aligned} \phi(q^ 9)-\psi(q)-q^{-3}\psi(q^ 9) &={{j(- q^ 3,q^{12})(q^ 6;q^ 6)^ 2_ \infty} \over {j(-q,q^ 4)j(- q^ 9,q^{36})}}, \\ {\psi(\omega q)-\psi(\omega^ 2 q)\over (\omega- \omega^ 2)q} &= {{j(-q,q^ 4)j(-q^ 9,q^{36})(q^ 3;q^ 6)_ \infty} \over {j(-q^ 3,q^{12})}} \\ \end{aligned} \] where \(\omega\) is a primitive cubic root of 1. Results concerning \(\Theta\) functions are proved first. Bailey pair method and constant term method are described next. These are used to derive Hecke type identities for the sixth order mock theta functions. The asymptotics of the functions for \(q\) near a root of unity are also discussed.
0 references
Bailey pairs
0 references
\(q\)-series
0 references
mock theta functions
0 references
\(\Theta\) functions
0 references
constant term method
0 references
Hecke type identities
0 references
asymptotics
0 references