Direct-sum cancellation of submodule systems (Q1177241)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Direct-sum cancellation of submodule systems |
scientific article; zbMATH DE number 20128
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Direct-sum cancellation of submodule systems |
scientific article; zbMATH DE number 20128 |
Statements
Direct-sum cancellation of submodule systems (English)
0 references
26 June 1992
0 references
Consider a module-finite algebra \(\Omega\) over a commutative Noetherian ring \(R\) of Krull dimension 1. An \(n\)-submodule system \(F\) of \(\Omega\)- modules consists of a finitely generated left \(\Omega\)-module together with a finite, indexed set of submodules \(F_ 1,\dots,F_ n\) of \(F\). The author studies direct-sum cancellation problems in the category of \(n\)-submodule systems of left \(\Omega\)-modules. Elementary divisor theory studies 1-submodule systems of a principal ideal domain.
0 references
module-finite algebra
0 references
Noetherian ring
0 references
Krull dimension
0 references
finitely generated left \(\Omega\)-module
0 references
direct-sum cancellation
0 references
category of \(n\)- submodule systems
0 references
0 references
0.91251785
0 references
0.9021215
0 references
0.89626443
0 references
0 references
0 references
0 references