An algebra of mixed computation (Q1179696)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: An algebra of mixed computation |
scientific article; zbMATH DE number 25194
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | An algebra of mixed computation |
scientific article; zbMATH DE number 25194 |
Statements
An algebra of mixed computation (English)
0 references
26 June 1992
0 references
A mixed computation is defined as a multi-valued mapping \(M: P\times S\to P\times S\), where \(P\) is the set of all operators, \(S\) the set of all memory states. A nondeterministic memory state (NDMS) algebra \((S;0,+,*,\Delta)\) of the type \((0,2,2,2)\) is constructed for any basis of the memory, and it is proved that this algebra is quasi-Boolean. The notion of operator is defined and some properties of operators are proved. On the end a few problems for further investigations are given.
0 references
DMS algebra
0 references
quasi-Boolean algebra
0 references
mixed computation
0 references