Distribution of random functional of a Dirichlet process on the unit disk (Q1181116)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Distribution of random functional of a Dirichlet process on the unit disk |
scientific article; zbMATH DE number 27778
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Distribution of random functional of a Dirichlet process on the unit disk |
scientific article; zbMATH DE number 27778 |
Statements
Distribution of random functional of a Dirichlet process on the unit disk (English)
0 references
27 June 1992
0 references
Let \(U\) be a Dirichlet process with parameter \(\mu\) on the unit disk. It is shown that the vector \((X,Y)\) has a p.d.f. \((c/\pi)(1-x^ 2-y^ 2)^{c-1}\), \(0<x^ 2+y^ 2<1\), where \(X+iY=\int_ 0^{2\pi}\exp\{(2\pi i/c)\mu((0,\theta))\}dU(\theta)\) and \(c=\mu((0,\theta))\).
0 references
characteristic function
0 references
spherical distribution
0 references
Dirichlet process
0 references