Gluing of differentiable spaces and applications. (Q1183055)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Gluing of differentiable spaces and applications. |
scientific article; zbMATH DE number 32647
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Gluing of differentiable spaces and applications. |
scientific article; zbMATH DE number 32647 |
Statements
Gluing of differentiable spaces and applications. (English)
0 references
28 June 1992
0 references
In classical problems of singularities of space-times the notion of a differentiable manifold is not sufficient. One of the authors introduced the concept of differentiable spaces to describe singularities of space-time [\textit{K. Spallek}, Math. Ann. 180, 269--296 (1969; Zbl 0169.52901)]. In this paper the authors present a general concept of gluing of differentiable spaces, and prove the Existence and Uniqueness Theorem of glued spaces. As an example they give the gluing of Robertson-Walker space-time. Another example are complex spaces, which can be considered as being glued together by their components.
0 references
singularities
0 references
differentiable spaces
0 references
cosmology
0 references
gluing of spaces
0 references
analytic spaces
0 references
Robertson-Walker space time
0 references
warped products
0 references
0 references
0 references
0 references