Cubic invariants for \(SL_ 2(F_ q)\) (Q1183289)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Cubic invariants for \(SL_ 2(F_ q)\) |
scientific article; zbMATH DE number 33042
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Cubic invariants for \(SL_ 2(F_ q)\) |
scientific article; zbMATH DE number 33042 |
Statements
Cubic invariants for \(SL_ 2(F_ q)\) (English)
0 references
28 June 1992
0 references
The author proves by a simple character argument that there is a unique tensor invariant of degree 3 for the Weil representation of \(SL_ 2(q)\), where \(q\) is an odd prime power. He also investigates the explicit form of the invariant. The paper generalizes, simplifies and corrects results of an earlier paper [J. Algebra 72, 146-165 (1981; Zbl 0479.20020)].
0 references
character
0 references
tensor invariant
0 references
Weil representation
0 references
0 references
0.8910129
0 references
0.8857003
0 references
0.8837508
0 references
0.88192135
0 references
0.8770986
0 references
0.8754182
0 references
0.8739041
0 references