A remark on Dubins-Savage inequality (Q1185542)

From MaRDI portal





scientific article; zbMATH DE number 35546
Language Label Description Also known as
English
A remark on Dubins-Savage inequality
scientific article; zbMATH DE number 35546

    Statements

    A remark on Dubins-Savage inequality (English)
    0 references
    0 references
    28 June 1992
    0 references
    Let \(\{X_ n,{\mathcal F_ n},\;n\geq 0\}\) be a martingale difference sequence such that \(E(X_ n\mid{\mathcal F}_{n-1})=0\) and \(V_ n=E(X^ 2_ n\mid{\mathcal F}_{n-1})\) is finite, where \(V_ 1\) is constant. Set \(S_ n=X_ 1+X_ 2+\dots+X_ n\) and let \(a>0\), \(b>0\). The paper proves the following inequalities and discusses some of their consequences: \[ P\left(S_ n\geq b+a\sum_{i=1}^ n V_ i\text{ for some } n\geq 1\right)\leq \min[(1+ab)^{-1},(1+V_ 1a^ 2/4)^{-1}] \] and \[ P\left(| S_ n|\geq b+a\sum_{i=1}^ n V_ i\text{ for some } n\geq 1\right)\leq 2 \min[(1+ab)^{-1},(1+V_ 1a^ 2/4)^{- 1}]. \]
    0 references
    Hajek-Rényi inequality
    0 references
    martingale difference sequence
    0 references
    inequalities
    0 references

    Identifiers