Periodic boundary value problems for nonlinear higher order ordinary differential equations (Q1186997)

From MaRDI portal





scientific article; zbMATH DE number 37433
Language Label Description Also known as
English
Periodic boundary value problems for nonlinear higher order ordinary differential equations
scientific article; zbMATH DE number 37433

    Statements

    Periodic boundary value problems for nonlinear higher order ordinary differential equations (English)
    0 references
    0 references
    0 references
    0 references
    28 June 1992
    0 references
    The authors investigate the solution set of the nonlinear BVP (*) \(L(u)=f(t,u)\), \(B_ i(u)=c_ i\), \(i=1,\ldots,n\), where \(c_ i\in\mathbb{R}^ n\) and \(L(u)=u^{(n)}+p_ 1(t)u^{(n-1)}+\cdots+p_ n(t)u=0\), \(B_ i(u)=\sum^ n_{j=1}[M_{ij}u^{(j- 1)}(a)+N_{ij}U^{(j-1)}(b)]\), \(i=1,\ldots,n\). Under monotonicity assumption on the nonlinearity \(f(t,\centerdot)\) it is proved that the solution set of (*) is nonempty and convex whenever the linear homogeneous BVP \(L(u)=0\), \(B_ i(u)=0\), \(i=1,\ldots,n\), is positive (negative) definite, i.e., \(\int^ b_ auL(u)>0\) \((<0)\) for any \(0\not\equiv u\in C^ n[a,b]\) for which \(B_ i(u)=0\), \(i=1,\ldots,n\). As a consequence a statement concerning the convergence of an upper-lower solution method for periodic BVP \(u^{(n)}=f(t,u)\), \(u^{(i- 1)}(a)=u^{(i-1)}(b)\), \(i=1,\ldots,n\), is proved.
    0 references
    periodic solution
    0 references
    upper and lower solutions
    0 references
    maximum principle
    0 references
    boundary value problems
    0 references
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references