On the distribution of the set \(\{\sum^ n_{i=1}\varepsilon _ i q^ i : \varepsilon_ i \in\{0,1\}, n \in \mathbb{N}\}\) (Q1187312)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On the distribution of the set \(\{\sum^ n_{i=1}\varepsilon _ i q^ i : \varepsilon_ i \in\{0,1\}, n \in \mathbb{N}\}\) |
scientific article; zbMATH DE number 39078
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On the distribution of the set \(\{\sum^ n_{i=1}\varepsilon _ i q^ i : \varepsilon_ i \in\{0,1\}, n \in \mathbb{N}\}\) |
scientific article; zbMATH DE number 39078 |
Statements
On the distribution of the set \(\{\sum^ n_{i=1}\varepsilon _ i q^ i : \varepsilon_ i \in\{0,1\}, n \in \mathbb{N}\}\) (English)
0 references
28 June 1992
0 references
Fix \(1<q<\sqrt{2}\) and let \(\{y_ n\}=\{\sum_{i=1}^ n \varepsilon_ i q^{2(n-i)}\): \(\varepsilon_ i\in\{0,1\}\}\), \(n=1,2,3,\dots\;\). The author shows that if \(y_{n+1}-y_ n\to 0\) as \(n\to\infty\) then there exists an expansion \(1=\sum_{i=1}^ \infty q^{-n_ i}\) such that \(\sup_ i(n_{i+1}-n_ i)=\infty\).
0 references
expansions
0 references
Pisot numbers
0 references