On necessary conditions for the Cauchy problem for evolution equations to be well-posed in classes of \(C^ \infty{}\)-functions. II (Q1187343)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On necessary conditions for the Cauchy problem for evolution equations to be well-posed in classes of \(C^ \infty{}\)-functions. II |
scientific article; zbMATH DE number 39175
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On necessary conditions for the Cauchy problem for evolution equations to be well-posed in classes of \(C^ \infty{}\)-functions. II |
scientific article; zbMATH DE number 39175 |
Statements
On necessary conditions for the Cauchy problem for evolution equations to be well-posed in classes of \(C^ \infty{}\)-functions. II (English)
0 references
29 June 1992
0 references
[For part I, see the preceding review.] Dans la partie II, l'auteur donne ses résultats complets; ils sont plus précis, dans ce cas particulier, que ceux obtenus par S. Mizohata et V. Ya. Ivrii; il en outre une condition nécessaire d'unicité locale pour donne le probléme de Cauchy.
0 references
homogeneous Cauchy problem
0 references
microlocal energy inequalities
0 references
Newton polygon
0 references
finite speed propagation
0 references