On Moore-Penrose inverses of Toeplitz matrices (Q1187376)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On Moore-Penrose inverses of Toeplitz matrices |
scientific article; zbMATH DE number 39253
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On Moore-Penrose inverses of Toeplitz matrices |
scientific article; zbMATH DE number 39253 |
Statements
On Moore-Penrose inverses of Toeplitz matrices (English)
0 references
23 July 1992
0 references
The author proves that the Moore-Penrose inverse of a Toeplitz matrix can always be represented as a sum of products of lower and upper triangular Toeplitz matrices. This result extends a theorem of \textit{I. C. Gohberg} and \textit{A. A. Semencul} [Mat. Issled. 7, No. 2(24) 201-223 (1972; Zbl 0288.15004)] regarding the inverse of a nonsingular Toeplitz matrix.
0 references
Moore-Penrose inverse
0 references
Toeplitz matrix
0 references
triangular Toeplitz matrices
0 references
0.9680147
0 references
0.9562496
0 references
0 references
0.9359024
0 references
0.9330082
0 references
0.9320977
0 references
0.92878264
0 references
0.9261678
0 references