Rigorous diffusion properties for the sawtooth map (Q1189236)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Rigorous diffusion properties for the sawtooth map |
scientific article; zbMATH DE number 54758
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Rigorous diffusion properties for the sawtooth map |
scientific article; zbMATH DE number 54758 |
Statements
Rigorous diffusion properties for the sawtooth map (English)
0 references
26 September 1992
0 references
Consider the map \(S:\mathbb{T}^ 2\to\mathbb{T}^ 2\), \(S(A,\theta)=(A+K\theta,A+(K+1)\theta)\pmod{2\pi}\), where \(K>0\), and the torus \(\mathbb{T}^ 2\) is identified with \([-\pi,\pi)^ 2\). The Lebesgue measure on \(\mathbb{T}^ 2\) is invariant under \(S\). It is proved that for each \(t\in [0,1]\) \[ \lim_{K\to\infty}\mathbb{V}([\sqrt{3}/\pi\sqrt{K}]\sum^{[Kt]- 1}_{i=0}S^ i_ 2)=t, \] where \(\mathbb{V}\) denotes the variance with respect to the normalized Lebesgue measure on \(\mathbb{T}^ 2\) and \(S^ i_ 2\) is the second component of the \(i\)'th iterate of \(S\), understood as a real number in \([\pi,\pi)\).
0 references
random phase approximation
0 references
0.9001548
0 references
0.8940147
0 references
0.8797093
0 references
0.87415755
0 references
0.8632493
0 references
0.86079866
0 references
0.8584603
0 references
0.8579277
0 references
0.8577966
0 references
0.85644054
0 references