Extension of Baker's analogue of Littlewood's diophantine approximation problem (Q1190660)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Extension of Baker's analogue of Littlewood's diophantine approximation problem |
scientific article; zbMATH DE number 55868
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Extension of Baker's analogue of Littlewood's diophantine approximation problem |
scientific article; zbMATH DE number 55868 |
Statements
Extension of Baker's analogue of Littlewood's diophantine approximation problem (English)
0 references
26 September 1992
0 references
Verf. beweist folgenden Satz: Sind \(\lambda_ 1,\dots,\lambda_ r\in\mathbb{R}^ \times\) paarweise verschieden und sind \(u_ 0,\dots,u_ r\in\mathbb{R}[t]\), \(u_ 0\neq 0\), so gilt \[ | u_ 0(t)|\prod_{\rho=1}^ r | u_ \rho(t)-u_ 0(t)\exp(\lambda_ \rho t^{-n})|\geq\exp(-{1\over 2}n(r^ 3+r)), \] wobei einer von Null verschiedenen formalen Laurentreihe \(a_ m t^ m+a_{m-1}t^{m-1}+\dots\in\mathbb{R}\{t^{-1}\}\) mit \(a_ m\neq 0\) unter \(|\dots|\) der Wert \(e^ m\) zugeordnet ist. Im Fall \(n=1\) reduziert sich dies Ergebnis auf eines von \textit{A. Baker} [Mich. Math. J. 11, 247-250 (1964; Zbl 0218.10052)], dessen Beweis nur für \(r=2\) ausgeführt worden war.
0 references
Littlewood's diophantine approximation problem
0 references
0.9067531
0 references
0.9021939
0 references
0.8972914
0 references
0 references
0.89454126
0 references
0.8898444
0 references
0.88975954
0 references