Die Nullstellen der Thetareihen zu positiven, binär-quadratischen Formen. (Zeros of theta series for positive binary quadratic forms) (Q1191471)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Die Nullstellen der Thetareihen zu positiven, binär-quadratischen Formen. (Zeros of theta series for positive binary quadratic forms) |
scientific article; zbMATH DE number 60090
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Die Nullstellen der Thetareihen zu positiven, binär-quadratischen Formen. (Zeros of theta series for positive binary quadratic forms) |
scientific article; zbMATH DE number 60090 |
Statements
Die Nullstellen der Thetareihen zu positiven, binär-quadratischen Formen. (Zeros of theta series for positive binary quadratic forms) (English)
0 references
27 September 1992
0 references
Let \(Q\) be a primitive, positive definite, binary quadratic form with discriminant \(4N\), \(N\equiv 3\pmod 4\). For \(N\) small or \(Q\) diagonalizable the zeros of the associated \(\vartheta\)-function with characteristic \((\nu,\mu)\) on the upper half-plane \(\mathbb{H}\) is well-known; moreover for odd characteristics the \(\vartheta\)-function vanishes identically on \(\mathbb{H}\). In embedding \(\mathbb{H}\) in the Siegel-space \(\mathbb{H}_ 2\) and applying results on theta-constants of degree 2 the author shows for the product \(\Theta\) of the 10 \(\vartheta\)'s with even characteristic \(\Theta(Q,z):=\prod \vartheta(Q,(\nu,\mu))\) the following: (1) \(\Theta\) vanishes identically on \(\mathbb{H}\) if and only if \(Q\) is diagonalizable, (2) If \(Q\) is not diagonalizable \(\Theta\) has only simple zeros, which are characterized by a quadratic equation with integer coefficients. As an application new relations on class numbers for imaginary-quadratic number fields are found which in special cases trace back to the work of Eichler.
0 references
theta series
0 references
binary quadratic form
0 references
class numbers
0 references
imaginary-quadratic number fields
0 references
0 references
0.8699368
0 references
0.85521334
0 references
0.8509282
0 references
0.8385596
0 references
0.8342663
0 references