On a conjecture of A. Ainouche and N. Christofides (Q1191686)

From MaRDI portal





scientific article; zbMATH DE number 62543
Language Label Description Also known as
English
On a conjecture of A. Ainouche and N. Christofides
scientific article; zbMATH DE number 62543

    Statements

    On a conjecture of A. Ainouche and N. Christofides (English)
    0 references
    0 references
    0 references
    27 September 1992
    0 references
    Let \(a\) and \(b\) be two nonadjacent vertices of a 2-connected graph \(G=(V,E)\). Let \(T=\{x\in V\mid a,b\notin N(x)\}\) and let \(\lambda^ T_ i=|\{a_ j\in T\mid N(a_ j)\cap N(a_ i)\neq\varnothing\}|\). The following conjecture of Ainouche and Christofides is proved. Theorem: If \(d(a_ i)\geq 3+\lambda^ T_ i\) for all \(a_ i\in T\), then \(G\) is Hamiltonian if and only if \(G+ab\) is Hamiltonian.
    0 references
    conjecture of Ainouche and Christofides
    0 references
    Hamiltonian
    0 references
    0 references

    Identifiers