On a conjecture of A. Ainouche and N. Christofides (Q1191686)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On a conjecture of A. Ainouche and N. Christofides |
scientific article; zbMATH DE number 62543
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On a conjecture of A. Ainouche and N. Christofides |
scientific article; zbMATH DE number 62543 |
Statements
On a conjecture of A. Ainouche and N. Christofides (English)
0 references
27 September 1992
0 references
Let \(a\) and \(b\) be two nonadjacent vertices of a 2-connected graph \(G=(V,E)\). Let \(T=\{x\in V\mid a,b\notin N(x)\}\) and let \(\lambda^ T_ i=|\{a_ j\in T\mid N(a_ j)\cap N(a_ i)\neq\varnothing\}|\). The following conjecture of Ainouche and Christofides is proved. Theorem: If \(d(a_ i)\geq 3+\lambda^ T_ i\) for all \(a_ i\in T\), then \(G\) is Hamiltonian if and only if \(G+ab\) is Hamiltonian.
0 references
conjecture of Ainouche and Christofides
0 references
Hamiltonian
0 references