The interactions of elementary waves of nonstrictly hyperbolic system (Q1191777)

From MaRDI portal





scientific article; zbMATH DE number 62801
Language Label Description Also known as
English
The interactions of elementary waves of nonstrictly hyperbolic system
scientific article; zbMATH DE number 62801

    Statements

    The interactions of elementary waves of nonstrictly hyperbolic system (English)
    0 references
    0 references
    0 references
    27 September 1992
    0 references
    The authors consider the interaction of shock waves for the following system of conservation laws: \(u_ t+{1\over 2}(3u^ 2+ v^ 2)_ x=0\), \(v_ t+ (uv)_ x= 0\). It is a model for systems with quadratic flux functions, in the so-called symmetric case. The interest lies in the fact that it is strictly hyperbolic outside \((0,0)\), where both eigenvalues vanish; moreover the eigenvalues are linearly degenerate along some half- lines. Interaction of shock waves for states connected by Hugoniot curves passing through those half-lines is then studied.
    0 references
    interaction of shock waves
    0 references
    conservation laws
    0 references
    quadratic flux functions
    0 references
    strictly hyperbolic
    0 references
    states connected by Hugoniot curves
    0 references
    0 references

    Identifiers