On the Faber polynomials of the univalent functions of class \(\Sigma\) (Q1192772)

From MaRDI portal





scientific article; zbMATH DE number 61595
Language Label Description Also known as
English
On the Faber polynomials of the univalent functions of class \(\Sigma\)
scientific article; zbMATH DE number 61595

    Statements

    On the Faber polynomials of the univalent functions of class \(\Sigma\) (English)
    0 references
    0 references
    27 September 1992
    0 references
    The \(n\)-th Faber polynomial \(\varphi_ n(t)\) of a function \(F(z)=1/f(1/z)\), \(f\in S\), is defined by the expansion \[ \log{F(z)-t\over z}=-\sum^ \infty_{n=1}{1\over n}\varphi_ n(t)z^{-n}. \] The author gives an explicit expression for \(\varphi_ n(t)\) in powers of \(t- \alpha_ 0=\varphi_ 1(t)\), and derives an inequality (*) \(|\varphi_ n'(t)|\leq n\) \(u_{2n}\), where \(u_{2n}\) is the \(2n\)-th Fibonacci number. Equality in (*) at \(t=\varepsilon\), \(|\varepsilon|=1\), only occurs if \(F(z)=z- 2\varepsilon+{\varepsilon^ 2\over z}\), that is if \(f(z)=z/(1- \varepsilon z)^ 2\) is a rotation of the Koebe function.
    0 references
    Faber polynomial
    0 references
    Fibonacci number
    0 references
    Koebe function
    0 references
    class \(S\)
    0 references

    Identifiers