An extension of an inequality for nondecreasing sequences (Q1193066)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: An extension of an inequality for nondecreasing sequences |
scientific article; zbMATH DE number 61936
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | An extension of an inequality for nondecreasing sequences |
scientific article; zbMATH DE number 61936 |
Statements
An extension of an inequality for nondecreasing sequences (English)
0 references
27 September 1992
0 references
\textit{A. Meir} [Rocky Mt. J. Math. 11, 577-579 (1981; Zbl 0482.26007)] proved: Theorem A. Let \(0=a_ 0\leq a_ 1\leq\cdots\leq a_ n\). Suppose \(a_ i- a_{i-1}\leq p_ i\) \((i=1,2,\dots,n)\) and \((*)\) \(p_ 1\leq p_ 2\leq\cdots\leq p_ n\). If \(r\geq 1\) and \(s+1\geq 2(r+1)\), then \[ \left((s+1)\sum^{n-1}_{i=1} a^ s_ i{p_ i+p_{i+1}\over 2}\right)^{1/(s+1)}\leq \left((r+1)\sum^{n-1}_{i=1} a^ r_ i{p_ i+p_{i+1}\over 2}\right)^{1/(r+1)}. \] In this paper we have proved that the conclusion of Theorem A remains valid if \((*)\) is replaced by \((**)\) \(p_ i\leq p_ n\) \((i=1,2,\dots,n-1)\).
0 references
monotonic sequences
0 references
nondecreasing sequences
0 references
inequality
0 references
0.9612093
0 references
0.9604179
0 references
0.9299012
0 references
0 references
0.9073285
0 references
0.89582163
0 references
0 references