Lyapunov exponent spectrum for a generalized coupled map lattice (Q1193674)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Lyapunov exponent spectrum for a generalized coupled map lattice |
scientific article; zbMATH DE number 64956
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Lyapunov exponent spectrum for a generalized coupled map lattice |
scientific article; zbMATH DE number 64956 |
Statements
Lyapunov exponent spectrum for a generalized coupled map lattice (English)
0 references
27 September 1992
0 references
Let define a ``Generalized Coupled Map Lattice'' as the system defined by the equation \[ X_{n+1}=A(n)f(X_ n)=F(X_ n) \] where \(X\) is a vector in \(\mathbb{R}^ N\), \(f\) a smooth diagonal map from \(\mathbb{R}^ N\) in itself and \(A\) an \(N\times N\) matrix. This paper contains the results of numerical simulations for the computation of the Lyapunov exponents (if any !!!) of such a system in the particular case: \[ \begin{cases} F_ i(x) & = (1-\varepsilon)u(x_ i)+{\varepsilon\over 2}(u(x_{i+1})+u(x_{i- 1}))\\ u(t) & = at(1-t).\end{cases} \] Some graphs are plotted for different values of the parameters \(\varepsilon\) and \(a\).
0 references
Lyapunov exponents
0 references
coupled map lattice
0 references
0 references
0 references
0.93145454
0 references
0.9308766
0 references
0.92423046
0 references
0.92098516
0 references
0.9153484
0 references
0.91476786
0 references
0 references
0.9093269
0 references
0.90715003
0 references