Surjective isometries of \(L^ 1 \cap L^ \infty [0, \infty )\) and \(L^ 1 + L^ \infty [0, \infty )\) (Q1196259)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Surjective isometries of \(L^ 1 \cap L^ \infty [0, \infty )\) and \(L^ 1 + L^ \infty [0, \infty )\) |
scientific article; zbMATH DE number 78087
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Surjective isometries of \(L^ 1 \cap L^ \infty [0, \infty )\) and \(L^ 1 + L^ \infty [0, \infty )\) |
scientific article; zbMATH DE number 78087 |
Statements
Surjective isometries of \(L^ 1 \cap L^ \infty [0, \infty )\) and \(L^ 1 + L^ \infty [0, \infty )\) (English)
0 references
15 December 1992
0 references
The authors show that the (normalized) weighted composition operators are precisely the surjective isometries on \(L^ 1\cap L^ \infty\) and \(L^ 1+L^ \infty\) (over \([0,\infty)\)).
0 references
weighted composition operators
0 references
surjective isometries
0 references