Cyclotomic units in \(\mathbb{Z}_p\)-extensions (Q1196307)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Cyclotomic units in \(\mathbb{Z}_p\)-extensions |
scientific article; zbMATH DE number 78180
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Cyclotomic units in \(\mathbb{Z}_p\)-extensions |
scientific article; zbMATH DE number 78180 |
Statements
Cyclotomic units in \(\mathbb{Z}_p\)-extensions (English)
0 references
16 December 1992
0 references
Let \(K_ n=\mathbb{Q}(\zeta_{p^{n+1}}+ \zeta_{p^{n+1}}^{-1})\), where \(p\) is an odd prime and \(\zeta_{p^k}\) is a primitive \(p^k\)-th root of unity. Let \(A_n\) denote the \(p\)-part of the ideal class group of \(K_n\), and \(B_n\) the \(p\)-part of the factor group of the cyclotomic units in the unit group of \(K_n\). The authors describe the structure of the direct and inverse limits of \(B_n\). In particular, \(\varinjlim B_n\simeq (\mathbb{Q}_p/\mathbb{Z}_p)^\lambda \oplus M\), where \(\lambda\) is the Iwasawa invariant and \(M\) is a finite group. It is proved that \(M\simeq C\) where \(C\) is determined by \(\varprojlim A_n\simeq \mathbb{Z}_p^\lambda \oplus C\).
0 references
direct limit
0 references
ideal class group
0 references
\(p\)-part
0 references
factor group
0 references
cyclotomic units
0 references
inverse limits
0 references
Iwasawa invariant
0 references
0.9996027
0 references
0.98874605
0 references
0.93797076
0 references
0.93676794
0 references
0 references
0 references
0.92438656
0 references
0 references