Remarks on some partition identities (Q1196590)

From MaRDI portal





scientific article; zbMATH DE number 89216
Language Label Description Also known as
English
Remarks on some partition identities
scientific article; zbMATH DE number 89216

    Statements

    Remarks on some partition identities (English)
    0 references
    0 references
    0 references
    16 January 1993
    0 references
    The authors utilize some power series expansions involving infinite products to obtain some new transformation formulas. For example, they prove the following two main theorems: Theorem 1. Let \(| x|<1\), \(| q_ i|<1\) \((i=1,2,\ldots,k)\). Write \[ f(x)=f(x;q_ 1,\ldots,q_ k)=\sum^ \infty_{n=1}{x^ n\over n(1-q^ n_ 1)\ldots(1-q^ n_ k)}, \] \[ F(x)=F(x;q_ 1,\ldots,q_ k)=\prod^ \infty_{{n_ i=0\atop 1\leq i\leq k}}(1-xq_ 1^{n_ 1}\ldots q_ k^{n_ k})^{-1}. \] Then \(\log F(x)=f(x)\). Theorem 2. If \(| x|<1\), \(| q|<1\), then \[ \prod^ \infty_{n=1}(1-xq^ n)^{-n}=\exp\left(\sum^ \infty_{n=1}{x^ nq^ n\over n(1-q^ n)^ 2}\right). \] By using these transformation formulas some new partition theorems are derived.
    0 references
    partition identities
    0 references
    power series expansions
    0 references
    transformation formulas
    0 references
    0 references

    Identifiers