Some integral representations of multivariable hypergeometric functions (Q1197535)

From MaRDI portal





scientific article; zbMATH DE number 91667
Language Label Description Also known as
English
Some integral representations of multivariable hypergeometric functions
scientific article; zbMATH DE number 91667

    Statements

    Some integral representations of multivariable hypergeometric functions (English)
    0 references
    0 references
    0 references
    16 January 1993
    0 references
    The \(n\)-dimensional Mellin transformation is applied in order to obtain two interesting multiple integral representations of the Kampé de Fériet function in \(n\)-variables. Corollaries of these results are \(n\)- dimensional integral representations for pairs of the Lauricella functions \(F_ D^{(n)}\), \(F_ B^{(n)}\), and \(F_ A^{(n)}\), \(F_ C^{(n)}\). These formulas provide generalizations of the representation of the Gauss function \(_ 2F_ 1\) as an integral involving first the Kummer function and second the modified Bessel functions.
    0 references
    hypergeometric functions in several variables
    0 references
    Mellin transformation
    0 references
    multiple integral representations
    0 references
    Kampé de Fériet function
    0 references
    Lauricella functions
    0 references
    Gauss function
    0 references
    Kummer function
    0 references
    modified Bessel functions
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references