Developable \((1, n)\)-Bézier surfaces (Q1200985)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Developable \((1, n)\)-Bézier surfaces |
scientific article; zbMATH DE number 97033
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Developable \((1, n)\)-Bézier surfaces |
scientific article; zbMATH DE number 97033 |
Statements
Developable \((1, n)\)-Bézier surfaces (English)
0 references
17 January 1993
0 references
The authors show that a rational Béziers patch of degree \((1,n)\) and control points \(p^{ij}\) (\(i=0,1\); \(j=0,\ldots,n\)) is a developable surface iff \[ \sum^{n-1}_{i,j,k,l=0}{n-1\choose i}{n-1\choose j}{n- 1\choose k}{n-1\choose l}\text{det}(p^{0i},p^{0j+1},p^{1k},p^{1l+1})=0 \] for all \(i+j+k+l=s\), \(0\leq s\leq 4n-4\). They give explicit formulas for \((1,2)\) and \((1,3)\) surfaces and a number of graphic examples.
0 references
spline
0 references
piecewise polynomial interpolations
0 references
curve
0 references
surface
0 references
solid
0 references
object representations
0 references
Bézier surfaces
0 references
developable surfaces
0 references
spline surfaces
0 references
graphic examples
0 references