An existence theorem for quasilinear elliptic equations on the \(N\)-torus (Q1201205)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: An existence theorem for quasilinear elliptic equations on the \(N\)-torus |
scientific article; zbMATH DE number 97425
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | An existence theorem for quasilinear elliptic equations on the \(N\)-torus |
scientific article; zbMATH DE number 97425 |
Statements
An existence theorem for quasilinear elliptic equations on the \(N\)-torus (English)
0 references
17 January 1993
0 references
The author proves the existence of a distributional solution \(u \in W^{m,2} (\Omega)\) of the equation \[ Qu \equiv (- 1)^{|\beta |} D^\beta \bigl( a_{\alpha \beta} (x, Du) D^\alpha u \bigr) = g(x,u) - h, \;\bigl( 1 \leq |\alpha |, |\beta |\leq m \bigr) \] (where \(h \in W^{- m,2} (\Omega))\), under the condition \(\int_\Omega g_+ (x)dx < h(1) < \int_\Omega g_- (x) dx\), where \(g_\pm\) are defined by \(g_+ (x) = \lim \sup_{s \to \infty} g(x,s)\), \(g_- (x) = \lim \inf_{s \to \infty} g(x,s)\). Here, \(\Omega\) is the \(N\)-dimensional Torus.
0 references
quasilinear elliptic equation on a torus
0 references
existence
0 references
0.9275899
0 references
0.92150605
0 references
0.9181092
0 references
0.91315347
0 references