Complete convergence for arrays (Q1203459)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Complete convergence for arrays |
scientific article; zbMATH DE number 118338
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Complete convergence for arrays |
scientific article; zbMATH DE number 118338 |
Statements
Complete convergence for arrays (English)
0 references
8 February 1993
0 references
Let \(\{(X_{nk}\), \(1\leq k\leq n)\), \(n\geq 1\}\) be an array of rowwise independent random variables. We extend and generalize some recent results due to \textit{T.-C. Hu}, \textit{F. Móricz} and \textit{R. L. Taylor} [Acta Math. Hung. 54, No. 1/2, 153-162 (1989; Zbl 0685.60032)] concerning complete convergence, in the sense of \textit{P. L. Hsu} and \textit{H. Robbins} [Proc. Natl. Acad. Sci. USA 33, 25-31 (1947; Zbl 0030.20101)], of the sequence of rowwise arithmetic means.
0 references
strong law
0 references
central limit theorem
0 references
weighted sums
0 references
array of rowwise independent random variables
0 references
complete convergence
0 references
0 references