Bounds for the smallest positive eigenvalues of trees with perfect matchings (Q1203866)

From MaRDI portal





scientific article; zbMATH DE number 123628
Language Label Description Also known as
English
Bounds for the smallest positive eigenvalues of trees with perfect matchings
scientific article; zbMATH DE number 123628

    Statements

    Bounds for the smallest positive eigenvalues of trees with perfect matchings (English)
    0 references
    0 references
    0 references
    18 February 1993
    0 references
    The authors prove the following statement: If \(T\) is a tree on \(2k\) vertices with the positive \(k\)-th largest eigenvalue \(\lambda_ k(T)\) (tree with perfect matchings), then \(\lambda_ k(T)\leq\lambda_ k(T^*_{2k})\), where \(T^*_{2k}\) is the tree \[ \undersetbrace k \to {\overset{\textstyle\circ} {\overset\vrule height4ex {depth1ex} \circ} \hbox to 2em{\hrulefill} \overset{\textstyle\circ} {\overset\vrule height4ex {depth1ex} \circ} \hbox to 2em{\hrulefill} \overset{\textstyle\circ} {\overset\vrule height4ex {depth1ex} \circ} \hbox to 2em{\hfill\dots\hfill} \overset{\textstyle\circ} {\overset\vrule height4ex {depth1ex} \circ} \hbox to 2em{\hrulefill} \overset{\textstyle\circ} {\overset\vrule height4ex {depth1ex} \circ} \hbox to 2em{\hrulefill} \overset{\textstyle\circ} {\overset\vrule height4ex {depth1ex} \circ}} \] Equality holds if and only if \(T\) is isomorphic to \(T^*_{2k}\).
    0 references
    tree
    0 references
    eigenvalue
    0 references
    perfect matchings
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references