Bounds for the smallest positive eigenvalues of trees with perfect matchings (Q1203866)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Bounds for the smallest positive eigenvalues of trees with perfect matchings |
scientific article; zbMATH DE number 123628
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Bounds for the smallest positive eigenvalues of trees with perfect matchings |
scientific article; zbMATH DE number 123628 |
Statements
Bounds for the smallest positive eigenvalues of trees with perfect matchings (English)
0 references
18 February 1993
0 references
The authors prove the following statement: If \(T\) is a tree on \(2k\) vertices with the positive \(k\)-th largest eigenvalue \(\lambda_ k(T)\) (tree with perfect matchings), then \(\lambda_ k(T)\leq\lambda_ k(T^*_{2k})\), where \(T^*_{2k}\) is the tree \[ \undersetbrace k \to {\overset{\textstyle\circ} {\overset\vrule height4ex {depth1ex} \circ} \hbox to 2em{\hrulefill} \overset{\textstyle\circ} {\overset\vrule height4ex {depth1ex} \circ} \hbox to 2em{\hrulefill} \overset{\textstyle\circ} {\overset\vrule height4ex {depth1ex} \circ} \hbox to 2em{\hfill\dots\hfill} \overset{\textstyle\circ} {\overset\vrule height4ex {depth1ex} \circ} \hbox to 2em{\hrulefill} \overset{\textstyle\circ} {\overset\vrule height4ex {depth1ex} \circ} \hbox to 2em{\hrulefill} \overset{\textstyle\circ} {\overset\vrule height4ex {depth1ex} \circ}} \] Equality holds if and only if \(T\) is isomorphic to \(T^*_{2k}\).
0 references
tree
0 references
eigenvalue
0 references
perfect matchings
0 references
0.95044553
0 references
0.9479852
0 references
0.94510746
0 references
0.9435293
0 references
0.94337213
0 references
0.9353993
0 references
0.9325292
0 references