Smoothness of global positive branches of nonlinear elliptic problems over symmetric domains (Q1204280)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Smoothness of global positive branches of nonlinear elliptic problems over symmetric domains |
scientific article; zbMATH DE number 126396
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Smoothness of global positive branches of nonlinear elliptic problems over symmetric domains |
scientific article; zbMATH DE number 126396 |
Statements
Smoothness of global positive branches of nonlinear elliptic problems over symmetric domains (English)
0 references
3 March 1993
0 references
Soient \(\Omega\in\mathbb{R}^ 2\) à bord régulier, ``symétrique'' \(f\) telle que \(f(0)=0\), \(f(x)>0\) si \(x\geq 0\) la solution positive dans \(\Omega\) de \(\Delta u+\lambda f(u)=0\), \(u=0\) sur \(\partial\Omega\) est de classe \(C^{k+1}\) si \(f\) est \(C^ k\).
0 references
positive solution
0 references
symmetric domain
0 references
0 references
0 references