Regularity statements for solutions of the Tricomi problem (Q1205492)

From MaRDI portal





scientific article; zbMATH DE number 147383
Language Label Description Also known as
English
Regularity statements for solutions of the Tricomi problem
scientific article; zbMATH DE number 147383

    Statements

    Regularity statements for solutions of the Tricomi problem (English)
    0 references
    0 references
    1 April 1993
    0 references
    Untersucht wird \(L[u]= yu_{xx}+ u_{yy}+ r(x,y)u =f(x,y)\) in \(G\subset \mathbb{R}^ 2\) berandet in der oberen Halbebene durch \(\Gamma_ 0\): \(AB\) mit \(A(-1,0)\) und \(B(0,0)\) und in der unteren Halbebene durch Charakteristiken \(\Gamma_ 1: AC\) und \(\Gamma_ 2: CB\) mit \(C(-1/2\), \(y_ c<0)\). \(W^{1,2} (G,bd)= \{u\in W^{1,2} (G)\mid u|_{\Gamma_ 0\cup \Gamma_ 1}=0\) im Spursinn\} und \(W^{1,2} (G,bd^*)= \{v\in W^{1,2}(G)\mid v|_{\Gamma_ 0\cup \Gamma_ 2}=0\) im Spursinn\}. Ein \(u_ f\in W^{1,2} (G,bd)\) heißt verallgemeinerte Lösung von \(L[u]=f\) in \(G\), \(u|_{\Gamma_ 0\cup \Gamma_ 1}=0: \iff \forall v\in W^{1,2} (G,bd^*)\): \(B[u_ f,v]:=- \int_ G (yu_{f,x} v_ x+ u_{f,y} v_ y- ru_ f v)dx dy= (f,v)_ 0\). Forderungen an die Glattheit von \(\Gamma_ 0\) und an \(r\), \(f\) und \(f|_{\Gamma_ 1}= {{\partial f} \over {\partial n}}|_{\Gamma_ 1}= \dots= {{\partial^{k-2} f} \over {\partial n^{k-2}}}|_{\Gamma_ 1} =0\) liefern die Regularitätsaussage \(u_ f\in W^{1,2} (G,bd)\cap W^{2,2}(G)\cap W^{k+2,2} (G_ +\cup \Gamma_ 0)\) mit \({{\partial u_ f} \over {\partial n}} |_{\Gamma_ 1}= \dots= {{\partial^{k-1} u_ f} \over {\partial n^{k-1}}} |_{\Gamma_ 1} =0\).
    0 references
    0 references
    Tricomi problem
    0 references
    regularity of generalized solutions
    0 references

    Identifiers