On a converse Cauchy inequality of D. Zagier (Q1205556)

From MaRDI portal





scientific article; zbMATH DE number 147509
Language Label Description Also known as
English
On a converse Cauchy inequality of D. Zagier
scientific article; zbMATH DE number 147509

    Statements

    On a converse Cauchy inequality of D. Zagier (English)
    0 references
    0 references
    1 April 1993
    0 references
    The following discrete analogue of an inequality of \textit{D. Zagier} [Nederl. Akad. Wet., Proc., Ser. A 80, 349-351 (1977; Zbl 0368.26003)] is proved: If \(a_ i\) and \(b_ i\) \((i=1,\dots,n)\) are real numbers such that \(a_ 1\geq a_ 2\geq\cdots\geq a_ n>0\) and \(b_ 1\geq b_ 2\geq\cdots\geq b_ n>0\), then \[ \sum^ n_{i=1}a^ 2_ i\sum^ n_{i=1}b^ 2_ i\left/\max\left(a_ 1\sum^ n_{i=1}b_ i,\;b_ 1\sum^ n_{i=1}a_ i\right)\right.\leq\sum^ n_{i=1}a_ ib_ i, \] with equality if and only if \(a_ 1=\cdots=a_ n\) and \(b_ 1=\cdots=b_ n\).
    0 references
    Cauchy inequality
    0 references
    converse inequality
    0 references
    monotonic functions and sequences
    0 references
    inequality of D. Zagier
    0 references
    discrete analogue
    0 references
    0 references

    Identifiers