``MAPLE'' analysis of nonlinear oscillations (Q1206169)

From MaRDI portal





scientific article; zbMATH DE number 148521
Language Label Description Also known as
English
``MAPLE'' analysis of nonlinear oscillations
scientific article; zbMATH DE number 148521

    Statements

    ``MAPLE'' analysis of nonlinear oscillations (English)
    0 references
    1 April 1993
    0 references
    Two MAPLE programs (MAPLE is a symbolic manipulation computer language) for the application of the intrinsic harmonic balancing (IHB) technique (a perturbation method) to the analysis of nonlinear autonomous and nonautonomous oscillations are presented. The first program computes approximations for periodic solutions of the form \[ x(t,\varepsilon)=p_ 0(\varepsilon)+\sum_{m=1}^ M (p_ m(\varepsilon)\cos m\omega(\varepsilon)t+r_ m(\varepsilon)\sin m\omega(\varepsilon)t) \] for autonomous systems \(\ddot x+kx+\varepsilon f(x,\dot x)=0\), \(\varepsilon\) small. The second program finds approximate periodic solutions \[ x(t,\varepsilon)=p_ 0(\varepsilon)+\sum_{m=1}^ M (p_ m(\varepsilon)\cos m\Omega t+r_ m(\varepsilon)\sin m\Omega t) \] of periodically excited systems \(\ddot x+d\dot x+kx+\varepsilon f(x,\dot x)=C_ 1 \cos \Omega t+ C_ 2\sin \Omega t\) with small \(\varepsilon\). The approximations can be performed up to an order \(n\) in \(\varepsilon\). Three illustrative examples (Duffing-, van der Pol- and forced Duffing- oscillator) are given.
    0 references
    numerical examples
    0 references
    van der Pol oscillator
    0 references
    MAPLE
    0 references
    nonlinear dynamical systems
    0 references
    nonautonomous systems
    0 references
    Taylor series expansion
    0 references
    symbolic manipulation computer language
    0 references
    intrinsic harmonic balancing
    0 references
    perturbation method
    0 references
    nonlinear autonomous and nonautonomous oscillations
    0 references
    periodic solutions
    0 references
    autonomous systems
    0 references
    Duffing-oscillator
    0 references
    0 references
    0 references
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references